

# Multiplying Numbers Parents' Guide 

Teaching Mathematics That Makes Sense
Multiplication
Students often learn how to multiply numbers one way. Yet, there are many ways to think about how to multiply numbers.

Think about how you learned to multiply:

23
$\times 17$

What is the "traditional" way of finding the answer? You follow these steps:

1) Multiply $7 \times 3$, get 21 , and put the 1 under the 7 and "carry" the 2
2) Multiply $7 \times 2$, get 14 , add the 2 above the 2 , get 16 and write this in front of the 1
3) Put a zero in the ones place under the 1
4) Multiply $1 \times 3$, get 3 , and write this under the 6
5) Multiply $1 \times 2$, get 2 , and write this under the 1
6) Add 161 and 230, getting 391

Here's what your work might look like:
2
23
$\times 17$
161
$+230$
391
Now, two questions:

1) When you multiply $7 \times 3$, why does the 1 go down below, but the 2 goes up above?
2) Why, exactly, do you put a zero in the one's place before multiplying $1 \times 3$ ?

You may be able to follow the steps reliably, but do you really know what's going on, and why these steps work?


# Multiplying Numbers Parents' Guide 

Teaching Mathematics That Makes Sense

Using Area
Models as a
Way to
Understand
Multiplication

You can also visualize multiplying numbers. Instead of following mechanics we don't fully understand let's think about things in a more intuitive, concrete way. Think of multiplying two numbers as calculating the area of a rectangle, where the two numbers are the lengths of the rectangle's sides - see diagram below.

Consider the original problem:
23
$\times 17$


When we are asked to multiply 23 by 17 , we are being asked to calculate the area of a rectangle that is 23 units high and 17 units wide.

## Partial

Products
focuses on
place value

Now, let's calculate our answer again, this time using the picture above to guide us:

| 23 |  |  |
| ---: | :--- | :--- |
| $\times \quad 17$ |  |  |
| 21 | $\leftarrow 7 \times 3$ | purple $1 \times 1$ squares |
| 140 | $\leftarrow 7 \times 20$ | orange $1 \times 10$ rectangles |
| 30 | $\leftarrow 10 \times 3$ | green $10 \times 1$ rectangles |
| +200 | $\leftarrow 10 \times 20$ | blue $10 \times 10$ squares |
| 391 |  |  |



Multiplication: Generic Area Model

# Multiplying Numbers Parents' Guide 

Teaching Mathematics That Makes Sense

You can also multiply numbers by using what we call the generic area model - in other words, the sides of the rectangle are not proportional.
Consider the original problem: $\begin{array}{r}23 \\ \times 17\end{array}$
Since we are multiplying a 2-digit number by a 2-digit number, create a $2 \times 2$ rectangle and think of it like a multiplication chart:

| 20 |  | 3 |
| :--- | :---: | :---: |
| 200 30 <br> 70 21 <br> 140 21 |  |  |
| $200+30+140+21=391$ |  |  |

Notice we get the same numbers as we did with partial products and the area model methods.

There is yet another way to think about multiplying numbers we can multiply numbers using the distributive property.
$23 \times 17$
$=(20+3) \times(10+7) \quad$ First distributing the 20 to $(10+7)$ and distributing the 3 to $(10+7)$
$=20(10+7)+3(10+7)$ Now distributing the 20 to 10 and 7 and distributing the 3 to 10 and 7
$=200+140+30+21$
$=391$
Understanding the connections among all of these methods will help students in Algebra and higher mathematics courses.

